

LA-UR-15-23328

Approved for public release; distribution is unlimited.

Title: Plutonium Oxidation A chronological Perspective 1941-2003

Author(s): Stakebake, Jerry L.

Allen, Thomas Howard

Intended for: This presentation will be used as a reference in a current publication

(LA-UR-15-21079). All of the references in that publication should be

available for review.

Issued: 2015-05-01

PLUTONIUM OXIDATION

A CHRONOLOGICAL PERSPECTIVE 1941-2003

Jerry L. Stakebake

Thomas Allen (1)

May 22, 2003

(1) Mr. J. L. Stakebake is the **sole contributor** to the technical content of this presentation. Mr. Allen is added **only** as the submitter and administrative contact needed for publication.

OBJECTIVE

- Describe the evolution of the Pu oxidation studies.
- Present the current understanding of plutonium oxidation.
- Describe experimental methods.
- Discuss "real world" applications of oxidation data.
- Present storage case studies.
- Where do we go from here?

SCOPE

- Oxidation kinetic studies
 - Experimental techniques
 - Environmental effects
 - Oxygen
 - Moisture
 - Nitrogen
 - Hydrogen
 - Water and Sea Water
 - Material (alloy) effects
- Pyrophoric characteristics
- Storage behavior

Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

EXPERIMENTAL METHODS

- Balance weight gain measurements of coupons
- TGA Semi-micro and microbalance measurements
- Ellipsometric film thickness measurements
- X-ray diffraction
 - Product identification
 - Oxide film thickness
- XPS X-Ray Photoelectron Spectroscopy
- Electron Microprobe, SEM Mr. J. L. Stakebake is the sole

THE EARLY YEARS Prior to 1960

- General Observations
 - Pu is reactive subject to corrosion
 - -Air oxidation enhanced by moisture
 - -Relatively inert in dry air
 - -Extensive corrosion in inert gases
 - Effect of alloying is dependent on the alloy
 - Unpredictable pyrophoric behavior of Pu
 - Pyrophoricity of corrosion products

THE EARLY YEARS Prior to 1960

• QUESTION FOR THE DAY

When was the first oxidation experiment conducted?

Where?

By whom?

What were the results?

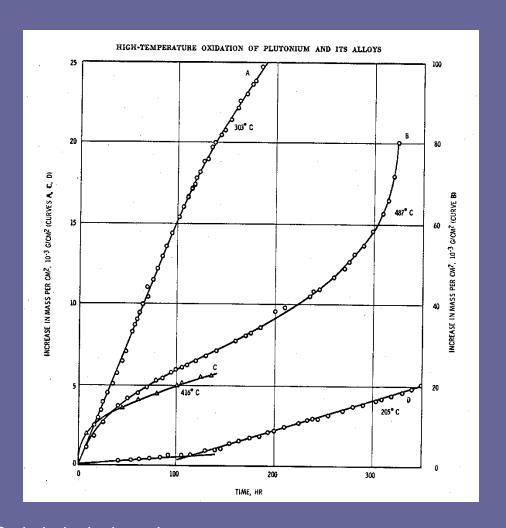
THE EARLY YEARS 1941 - 1960

 The First Experimental Oxidation Experiment

- Berkeley, February, 1941
- Seaborg, Wahl, Kennedy, and McMillan
- Minute quantity of new synthetic element (94) was oxidized
- Experiment was key step in proof of existence of Pu

THE EARLY YEARS

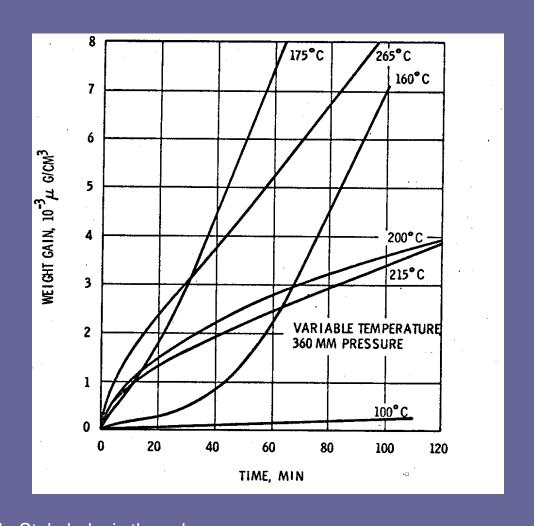
1941 - 1960


- Experimental Studies
 - Kolodney 1945 small coupons showed effects of temperature and moisture.
 - Dempsey and Kay 1957; Preliminary results
 - Temperature 40 487°C
 - 0% and 100% Relative Humidity
 - Findings reported by Dempsey and Kay and reinforced by others later:
 - Interference colors for oxide films
 - Kinetic anomalies near phase Pu boundaries
 - Pyrophoricity and Ignition Temperatures
- Numerous experiments initiated

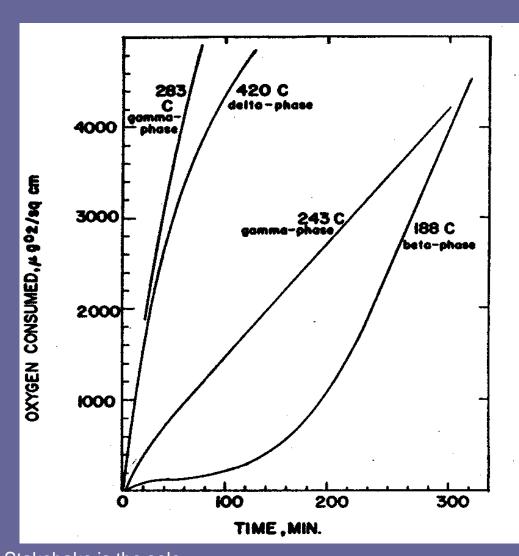
THE EARLY YEARS

1941 - 1960

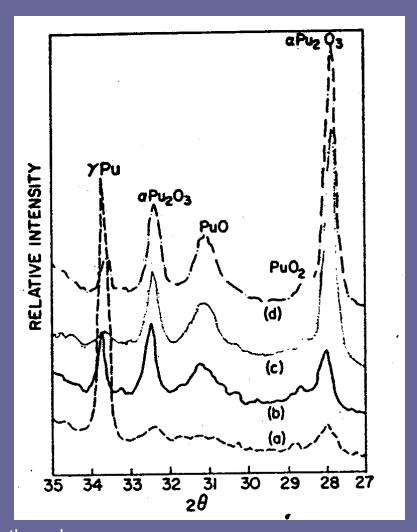
- Oxidation of Pu in air
- 205°,303°,416°, and 487°C
- Introduction of kinetic anomalies


Dempsey & Kay 1958

THE PROLIFIC YEARS 1960 - 1985


- Air oxidation of Pu
- Anomalous kinetic behavior at low temperatures
- Caused by Pu metal phase change ????????

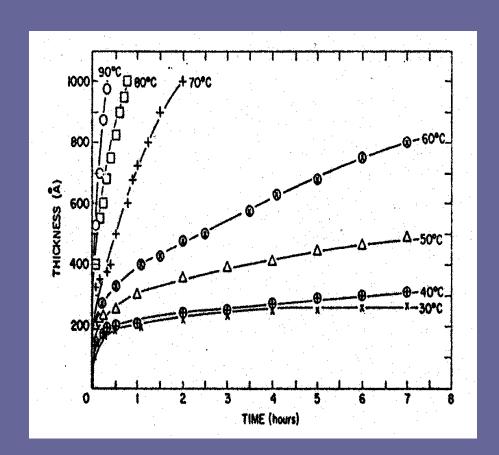
• Thompson - 1963


Oxidation of Unalloyed Pu

- Air $-200 \text{ ppm H}_2\text{O}$
- 3 Stage Kinetics
 - Parabolic
 - Linear
 - Transition/Linear
- Temperature Effect
 - Kinetic anomaly at 400°C
 - High self-heating at T>408°C
- [Schnizlein and Fischer]

X-Ray Diffraction of Pu Oxides

- Oxidation of Pu in O₂ at 305°C (Rate Maximum)
 - (a) Vacuum
 - (b) 2 millitorr O₂
 - (c) 11 minute scan
 - (d) 30 minute scan
- Oxidation at 420°C
 - Rate Minimum
 - PuO (PuOC) is primary
- [Terada 1969]

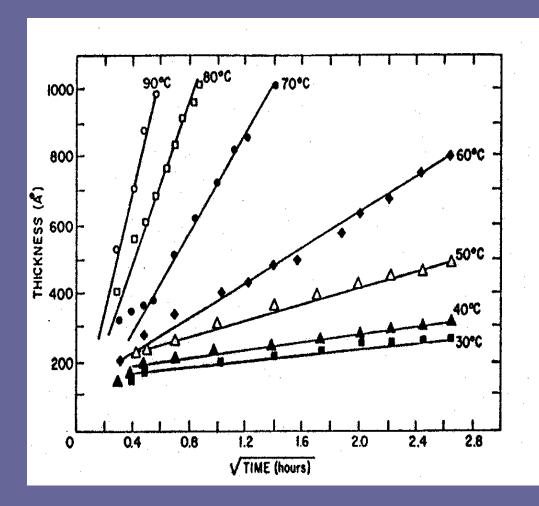


THE PROLIFIC YEARS 1960-1985

- Ellipsometer Measurements
 - Clean Pu coupons
 - Temperatures < 100°C</p>
 - Oxygen atmosphere
 - Limiting oxide film thickness is ~1500Å
- Results
 - Limiting oxide film thickness is ~1500Å
 - Parabolic kinetics for films > 200-400Å and temperatures between 28 and 90°C
 - Retardation of oxidation by initial film of PuO (PuOC)
 - Product PuO₂

Ellipsometric Measurement of Alloyed Pu Oxidation

- Alloyed Pu Oxidation
- Polished clean sample
- 5.0 x 10⁻² Torr oxygen
- 30 to 90°C
- Measured oxide film thickness



• Larson & Cash 1969

Ellipsometric Measurement of Alloyed Pu Oxidation

- Alloyed Pu Oxidation
- Parabolic Rate for films greater than 200-400 Å
- Linear initial rate

Larson & Cash 1969

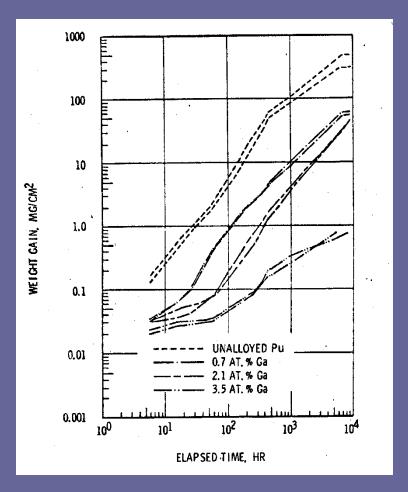
Oxide Film Thickness Film Thickness vs. Color

- Polished Pu coupon
- Argon Bombarded
- Exposed to 50µ O₂
- Temperature 30-90°C
- Ellipsometer Measure
- Visual Monitoring of 1st Order Colors

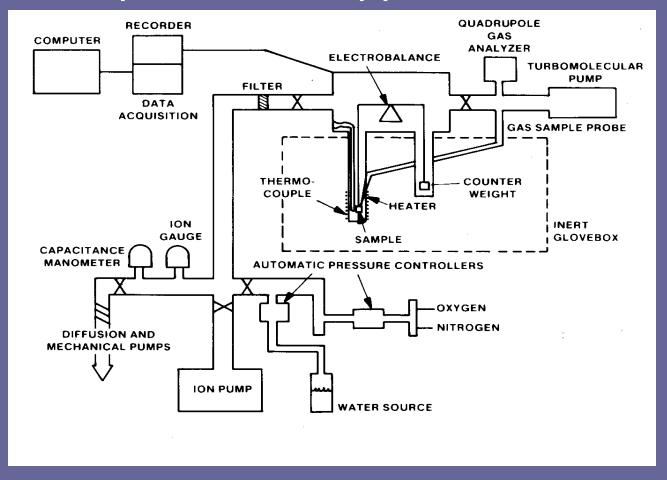
	_	<u>o</u>
Neutral	Cilva	100A
	SIIVAL	-1000A
1 1 6 6 1 1 6 1		

2			
Λ	$A \cap A$		
	/		
	「		\mathbf{M}
1	400	Gold	М

•	Red	Violet	525Å
---	-----	--------	------

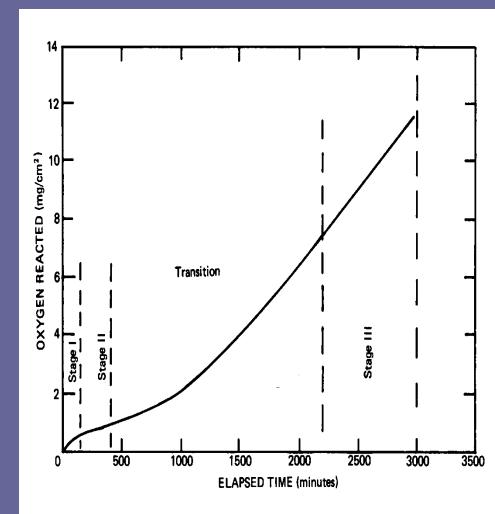

 Violet) [5/	4
----------------------------	-----	----	---

•	Purple	600Å

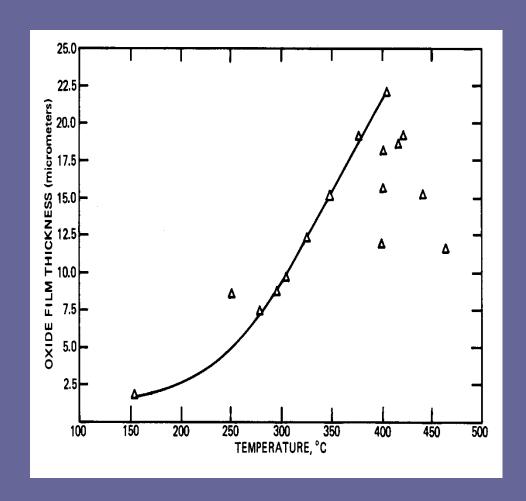

Silver Blue 1000Å

THE PROLIFIC YEARS 1960-1985

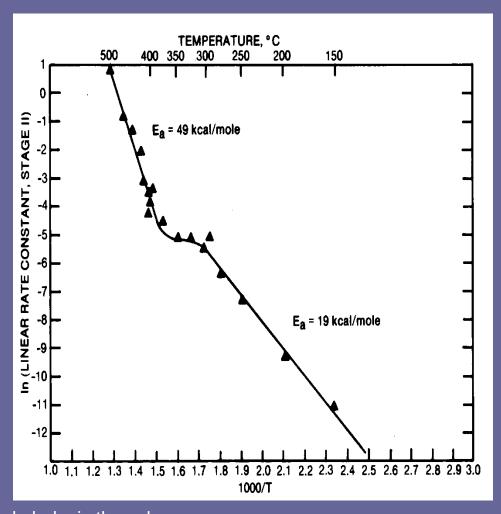
- Effect of Ga alloying
 - Air oxidation in moist air
 - Temperature 75°C
 - Rate decreases with Ga concentration
 - J. T. Waber 1961
- Other alloys also decrease oxidation
 - Al (comparable to Ga), Zr, Ce,
 Zn, are less effective
- Some alloys enhance oxidation [ternary alloys]



THE PROLIFIC YEARS 1960-1985 Experimental Apparatus

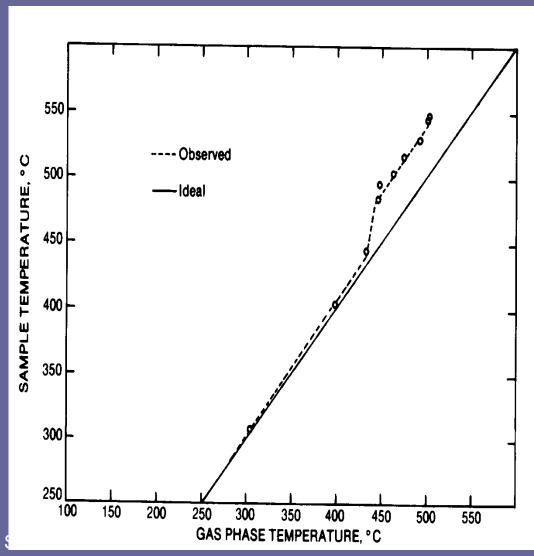

Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

- Pu-Ga Alloy Oxidation
 - 150 500°C
 - Run at 278°C illustrated
 - 500 Torr dry air
- 3-Stage Oxidation
 - I Parabolic kinetics diffusion controlled
 - Il Linear kinetics constant film thickness
 - III Linear kinetics interface controlled
 - I + II Paralinear

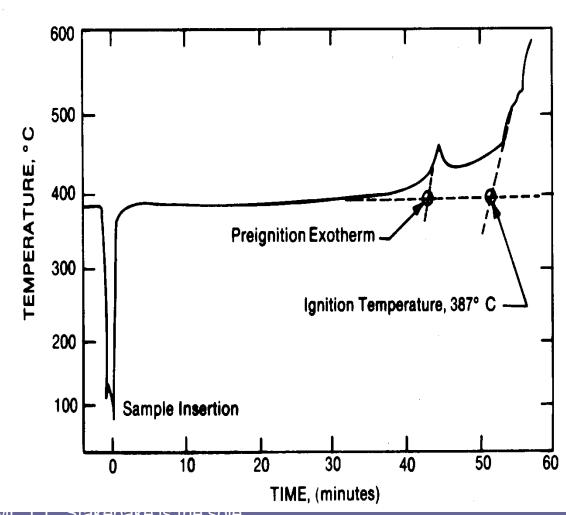


Dense Oxide Film

- Initial formation in parabolic stage
- Thickness depends on temperature
- Range 2 -22 micron
- > 400°C thickness is unpredictable



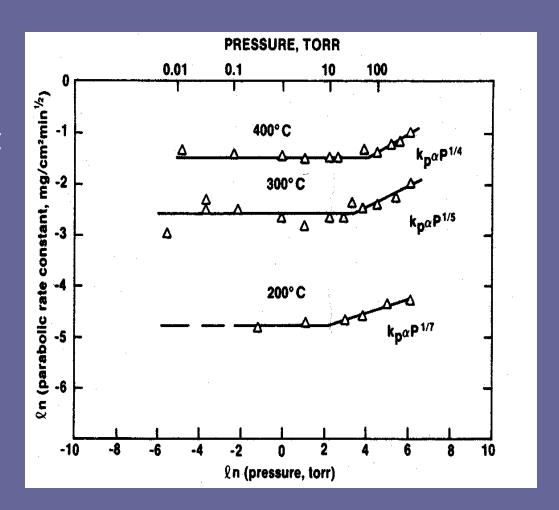
- Kinetic Temperature
 Dependence
 - Linear Stage II
 - Discontinuity between~300-400°C
 - Suggests change in oxidation process or type of dense oxide



Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

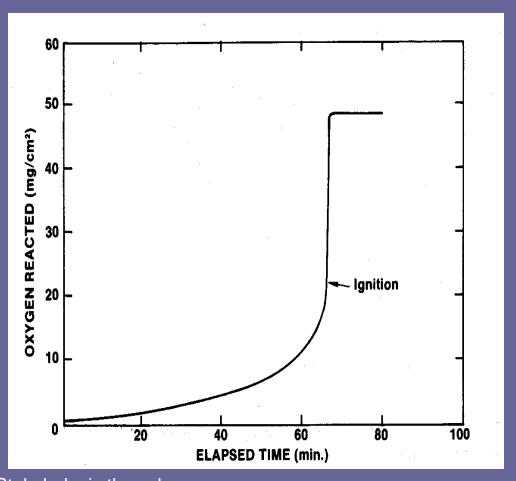
- Sample vs. Gas-Phase Temp.
 - Actual sample & gas T measured
 - Ideal (normal)
 - Observed sample
 - Exothermicheating > 435°C
 - Suggest onset of ignition

- Constant Temp.Ignition
 - Temperature
 differential shown
 previously likely
 the result of pre ignition (Pitts '68)
 - Preignition here is for unalloyed Pu
 - Actual ignition was not observed
 - Ignition ~387°C


contributer to the technical content

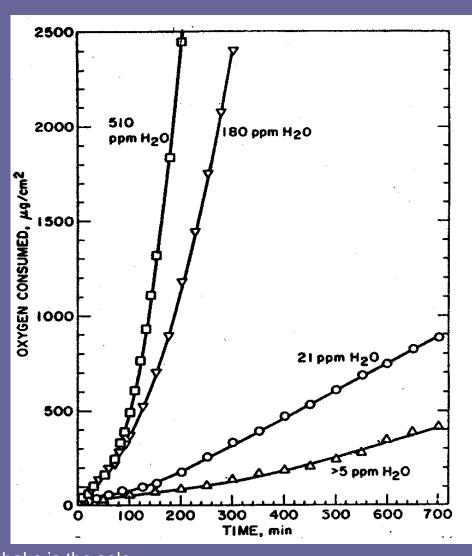
OXYGEN PRESSURE DEPENDENCE

- Alloy Oxidation in Oxygen at 150-500°C
- Oxygen Pressure 0.004 500 Torr
- Stage I & II Independent of pressure for P<60 Torr [Temperature dependent]
- P>60 Torr
 - $-k\alpha P^{1/7-1/2}$ [Temperature dependent]
- Stage III linear rate
 - Independent of pressure for P<37 Torr
 - k α P¹ above 55 Torr and 400°C


Oxygen Pressure Dependence

- Oxidation of Alloyed
 Pu Stage I
 - Pressure independent at low P
 - Independent region is T dependent
 - Pressure dependentfor P > 13 Torr

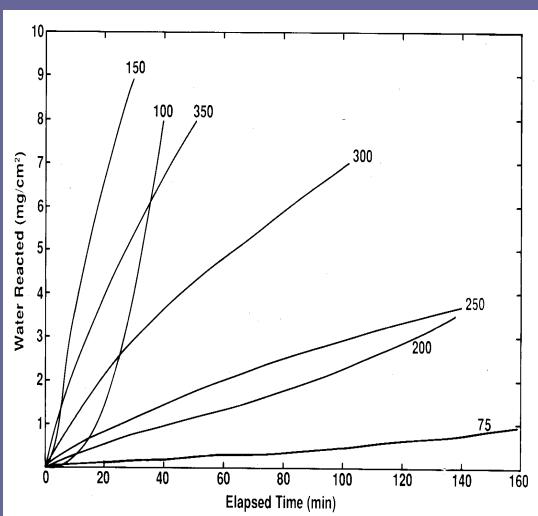
OXYGEN PRESSURE DEPENDENCE


- High Temperatures
 - 465°C and 10 Torr
 - Stage III depends
 on availability of O₂
 - O₂ chemisorption
 - Sticking probability controls

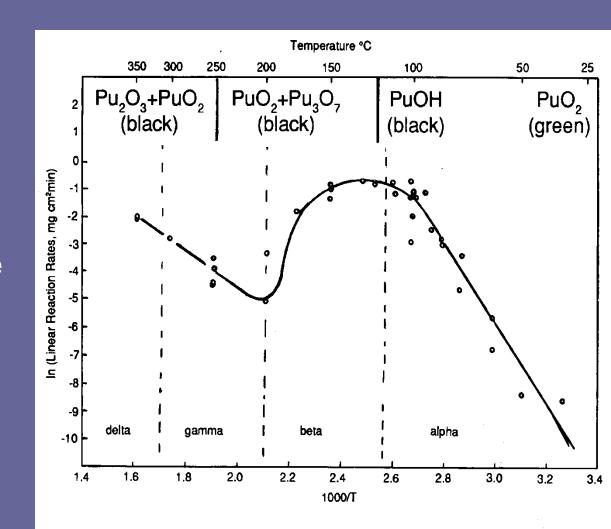
Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

Effects of H₂O on Pu Oxidation

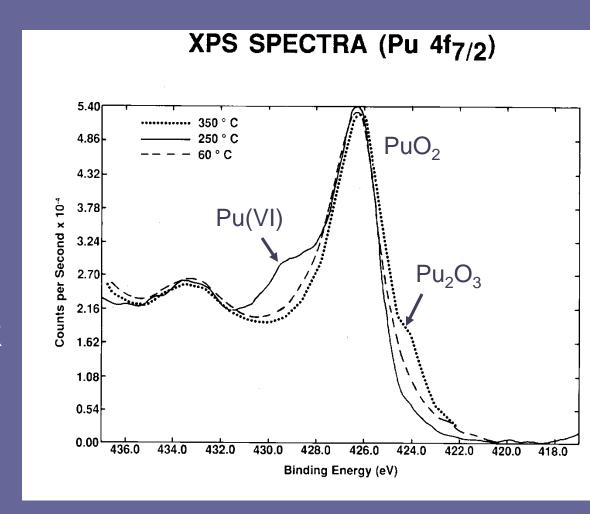
- Unalloyed Pull
- 190°C in oxygen
- Water accelerates oxidation
- No moisture effect above 215°C
- Effect greater in inert gases
- [Schnizlein and Fischer]


Effects of H₂O on Pu Oxidation

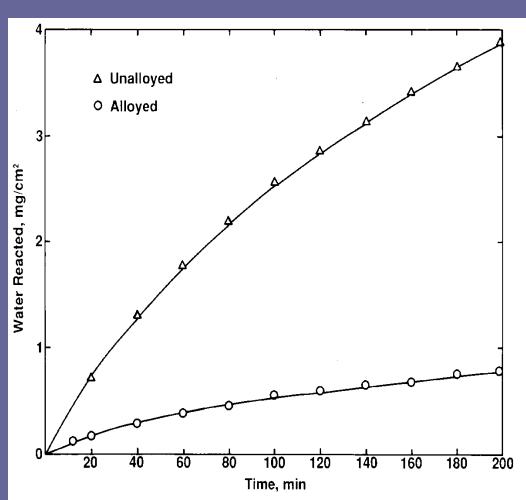
Glovebox oxidation of unalloyed Pu in air and nitrogen atmospheres


Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

- Unalloyed Pu in 15
 Torr H₂O Vapor
- Complex Temp.
 Behavior
- Multiple Products
- Changing Kinetics



Mr. J. L. contribute


- Unalloyed Pu in
 15 Torr H₂O
- Arrhenius Plot
 - Poor correlation with metal phase
 - Good correlation with products

- Unalloyed Pu +
 Water Vapor
- PuO₂ at 60°C
- PuO₂ + Pu₂O₃ at
 350°C
- New Oxide Peak at 250°C
- BE Correlates to Pu(VI)

- Data for 250°C & 15
 Torr water
- Unalloyed rate ~5 X alloyed rate
- Diverse Products
 - PuH₂
 - PuOH
 - $-Pu_2O_3$
 - PuO_2
 - PuO_{2+δ}

- Unalloyed Pu reaction with water vapor
- 250°C, 15 Torr water
- Localized pitting
- The presence of a uniform hydride layer at the metal interface is unknown

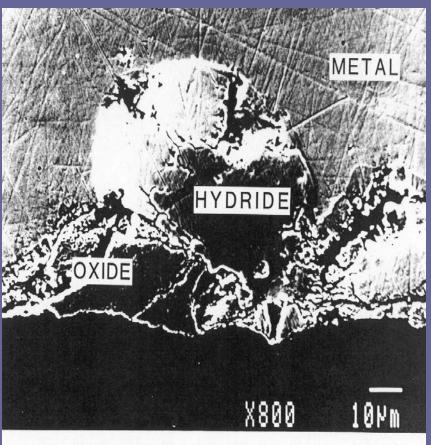
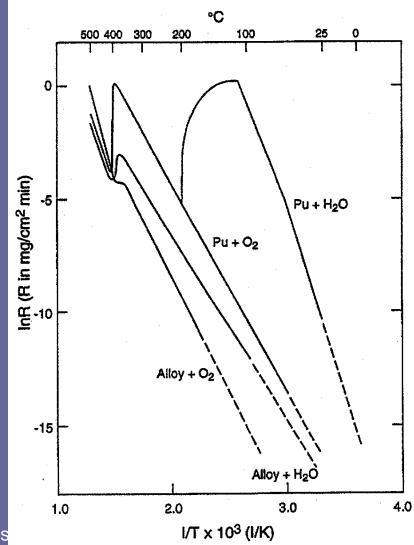
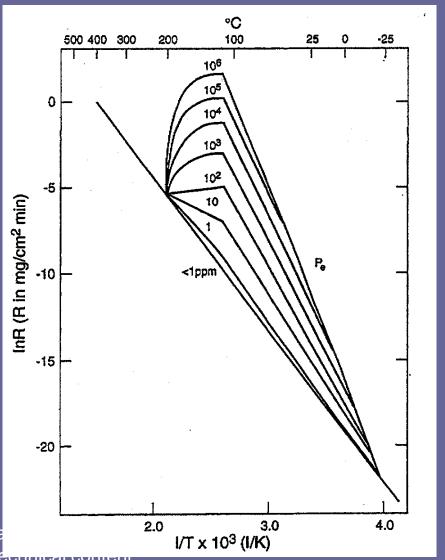



Figure 7. Photomicrograph of the product layer formed by the reaction of water vapor with unalloyed plutonium at 250 °C. Magnification is 800×.

Summary: Pu Oxidation Alloy, Oxygen, Moisture Effects


- Kinetics in H₂O and O₂ are:
 - − H₂O dependent < 200°C</p>
 - H₂O <u>independent</u> > 200°C
 - − O₂ independent < 200 °C</p>
- Alloying
 - Rate Suppressing
 - Suppression exceeds enhancement by H₂O
 - Effect only < 400°C</p>

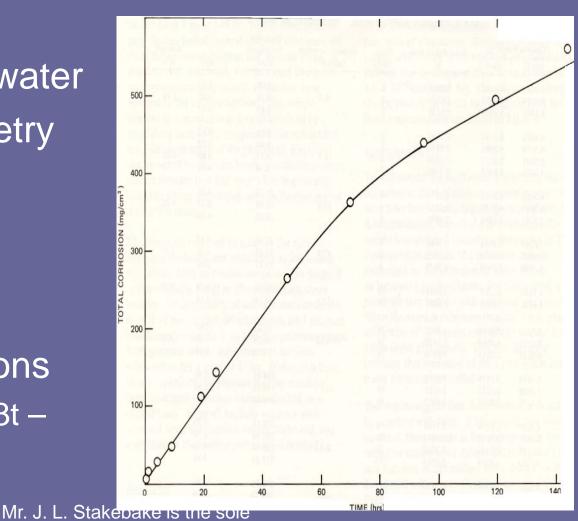
Mr. J. L. Stakebake is

Summary: Pu Oxidation Moisture Effects on Pu Oxidation in Air

- Rate (R) α [H₂O]ⁿ
 - n is temperature dependent
- Effects of H₂O
 persistent < 200°C as
 long as O₂ is present
- R (25°C,25 Torr H₂) is
 200 times faster than
 R (25°C, 160 Torr O₂)

Mr. J. L. Stakeba

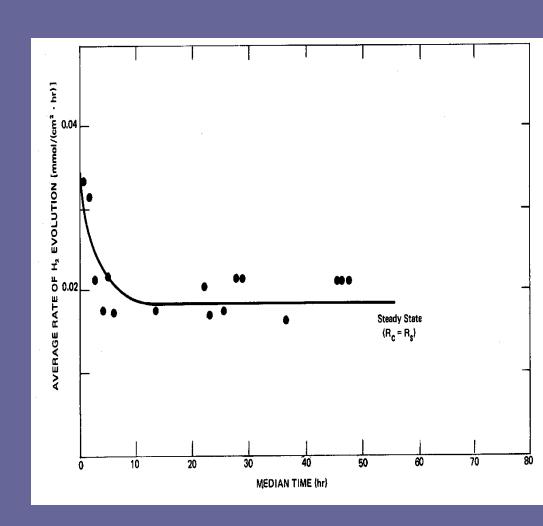
ontributer to the technical content of this presentation. Mr. Allen is


Summary Oxidation Kinetics

- General:
 - $-R = \text{kexp}(-E_a/R^*T)(PO_2)^m(PH_2O)^n$
 - [kinetic description depends on determining m, n, and E_a]
- Moisture Independent Region (T > 200°C)
 - $-\ln R(R \text{ in mg cm}^{-2} \text{ min}^{-1}) = 13.68 (9010)/T$

- Moisture Dependent Region (T < 200°C)
 - $-\ln R = -12.60 + 0.498 \ln P_{H2O}$

Corrosion of Pu in Sea Water


- Closed αPu
 System
- Vented with sea water
- Change of geometry by corrosion products?
 - Oxides
 - Hydrogen
- Kinetics of reactions
 - $k (mg/cm^2) = 6.43t 0.01706t^2$

contributer to the technical content

Corrosion of α Pu in Sea Water

- Products
- Solid
 - $Pu(OH)_4 \cdot X H_2O$
- Gas
 - $-H_2$
 - $-1.6 \times 10^{-5} \text{ (mol/cm}^2\text{hr)}$
- Hodges, Haschke, Reynolds -1979

Plutonium Pyrophoricity

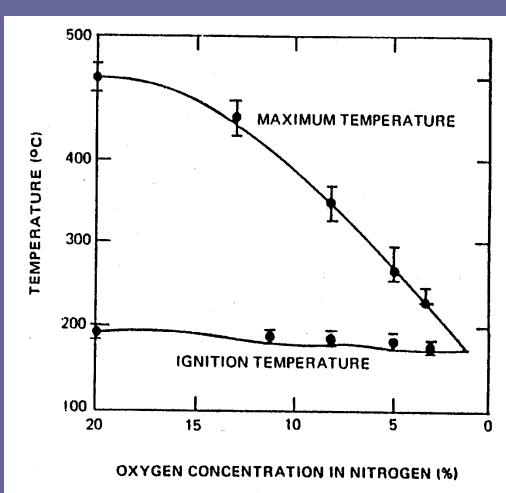
Plutonium Pyrophoricity

- Metal Burning
 - Chemical Oxidation
 - Surface Reaction
 - Exothermic
 - Reaction ControlledKinetics

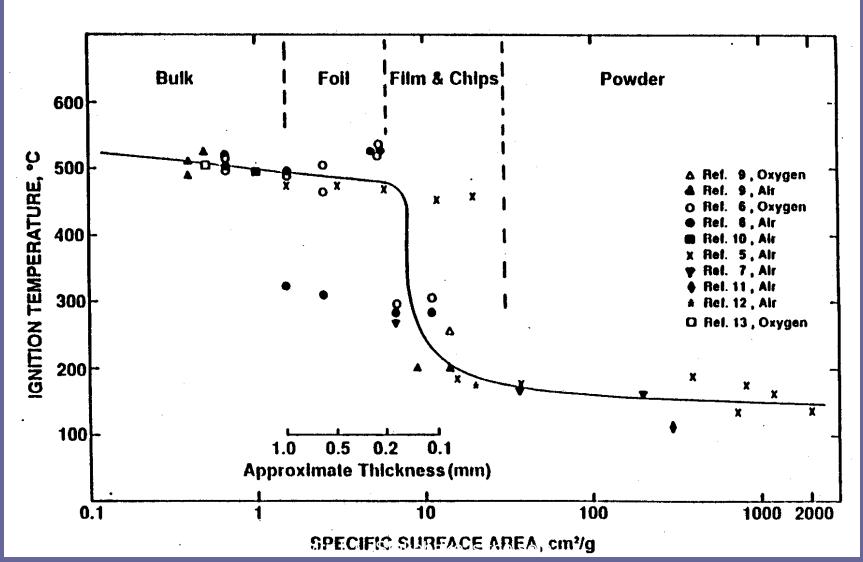
- Combustible Burning
 - Chemical Breakdown
 - Vapor Phase Reaction
 - Exothermic
 - Gas DiffusionControlled

Plutonium Pyrophoricity

- Ignition of 2kg Puingot
- Stored in produce can
- Exposed to water vapor
- Corrosion ruptured the can


Plutonium Ignition Studies

Effects of Oxygen


- Alloyed Pu
- 140 mesh filings
- Oxygen concentration
 - 3-22%

Findings

- No ignition in $< 3\% O_2$
- Ignition temperature constant
- Burning temperature decreases with O₂

Geometrical Effects on Pu Ignition

Examples of Pyrophoric Pu

- Pyrophoric Residues
 - Unburned Brushed Oxide, Floor Sweepings,
 Casting Slag
- Pyrophoric Metal / Compounds
 - Plutonium Hydride
 - Plutonium Chips, Turnings, Films
- Specifically
 - Pu metal < 0.5 mm thick or weighing < 2 g</p>

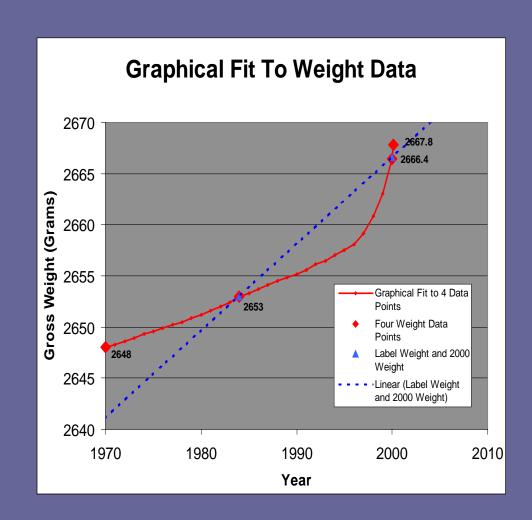
Mechanism for Pu Pyrophoricity

- Ignition Temperature
 - Surface: Mass Ratio
 - Particle Size
- Critical Dimensions
 - 0.25 mm diameter
 - 0.088 mm thickness
- Ignition Temperature
 - > 475-525°C

- Sample Heating
 - $-Pu_2O_3 \rightarrow PuO_2$
 - Adiabatic heating of particles of less than critical dimensions
 - External heating of larger particles
- Good Agreement with observations

Metal Explosibility

• Uranium Ignition


- Conditions
 - < 10 micron particles</p>
 - Dispersed cloud
- Temperature, 20°C
- Pressures
 - 40-50 psig, max
 - 3000-7000 psi/sec

Plutonium Ignition

- Conditions
 - <1 mm particles</p>
 - Individual laser ignition
 - 40% exploded
- Energy
 - Not measured
 - Appeared less then U

Pu Storage Issues Container Failures

- Causes
 - Metal Oxidation
 - Can seal leak
 - Pu oxidation
 - Volume expansion fails can
 - GasPressurization
 - Moisture
 - Organics

Hanford Pu Storage - Szempruch

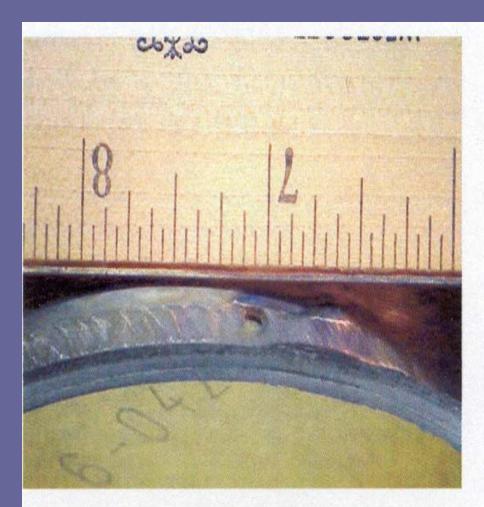
Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

Failed Container RF Produce Can

- ~ 2 kg Pu Ingot
- Repeated exposure to water bath
- Failure occurred when corrosion products expanded

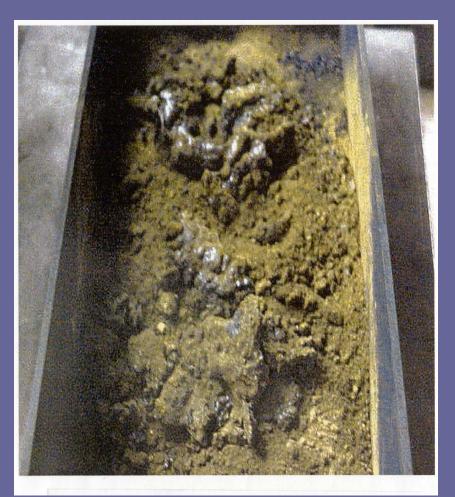
Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

Requirements for Safe Storage DOE Standard 3013


- Calcination of oxide
 - Removal of organics
 - Removal of water
- Good Container
 - Pressure resistant
 - Corrosion resistant
 - Proper sealing

contributer to the technical content

Consequences of Not Meeting the Criteria


- Inner 3013 can
- Weld defect not detected
- Metal button stored in SRS vault
- Oxidation produced oxide that was released during storage and transfer

Weld Defect Figure 2-3

Potential Problems with Metal Stabilization

- Pure Pu Button (Hanford)
- Burned in air in a Hasteloy tray
- Product presumed to be an oxidation resistant Pu-Ni alloy

Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

Potential Problems with Oxide Stabilization

- Oxide feed material produced by Pu metal oxidation
- Pre-burning did not convert all Pu to oxide
- Molten Pu corrosion of Inconel tray coated with Al

Mr. J. L. Stakebake is the sole contributer to the technical content of this presentation. Mr. Allen is

Conclusions

- Objectives for early studies
 - Desire for rapid accumulation of data
 - Pu availability was limited
 - Use of bounding conditions
 - High Temperature
 - High Humidity
 - Application need was immediate
 - Choice of instrumentation was limited
 - Some measurements made under unrealistic conditions; e.g. ellipsometry

Conclusions

- Objectives for studies in the prolific years
 - Need for defining behavior in production environments
 - New Pu alloys
 - New methods of production
 - Better environmental controls in gloveboxes
 - Need for capability to predict oxidation behavior
 - Availability of better instrumentation

Conclusions

- Where are the holes in our knowledge?
 - Data needed under real conditions
 - Temperatures of 0 to 200°C
 - Moisture levels 200 to 20,000 ppm
 - Moisture dependent region needs data
 - Better instrumentation needs to be used
 - Kinetic measurements
 - Product characterization
 - Proposed models need further validation

Acknowledgements

Key Review Articles

- O. J. Wick, "Plutonium Handbook" (1980)
- Jerry L. Stakebake, "The Storage Behavior of Plutonium Metal, Alloys, and Oxide", J. Nucl. Mater. 38, (1971) 241
- C. A. Colmenares, Prog. Solid State Chem., 9 (1975) 139
- C. A. Colmenares, Prog. Solid State Chem., 15 (1984) 257
- J. C. Martz, J. M. Haschke, J. L. Stakebake, "A Mechanism for Plutonium Pyrophoricity", J. Nucl. Mater. 210 (1994) 130
- T. C. Totemeier, "Review of the Corrosion and Pyrophoricity Behavior of Uranium and Plutonium", West Report ANL/ED/95-2 (1995)
- J. M. Haschke and J. L. Stakebake, "Handling, Storage, and Disposition of Plutonium and Uranium", Chemistry of the Actinide and Transactinide Elements" (2003) in press